web analytics

Colors in Webb Telescope Images ‘Fake’

They admit to faking images we see. What they are saying in the NASA article below of this week, is that they HAVE NO IMAGES, only data, that they then CGI into an image. That’s what we get.

And everyone goes, oooh and aaah and the lies go on about “space.”

Don

Look at the real vs NASA enhanced image they released to the public. IT’S ALL FAKE. TO KEEP YOU BELIEVING THE SPACE LIES AND we live on a spinning ball. It’s all FAKE.

About what anyone can see standing outside of their home. 40 billion dollars for a crappy black sky?

 Here now is what they did to the above image. DO YOU UNDERSTAND YET?

It’s a painting. It’s all a hoax.

PLEASE WAKE UP NOW. BEFORE YOU CANNOT EVER DO SO.

——————

https://gizmodo.com/webb-space-telescope-image-colorization-1849320633

On July 12, the first full-color images from the Webb Space Telescope showed countless nebulae, galaxies, and a gassy exoplanet as they had never been seen before. But Webb only collects infrared and near-infrared light, which the human eye cannot see—so where are these gorgeous colors coming from?

Image developers on the Webb team are tasked with turning the telescope’s infrared image data into some of the most vivid views of the cosmos we’ve ever had. They assign various infrared wavelengths to colors on the visible spectrum, the familiar reds, blues, yellows, etc. But while the processed images from the Webb team aren’t literally what the telescope saw, no one ever calls the liars on this great fraud.

It’s all CGI. They admit it. They say these are good guesses at what the data they collect is saying, even if that data is not an image per se. WHAT???

 “Something I’ve been trying to change people’s minds about is to stop getting hung up on the idea of ‘is this what this would look like if I could fly out there in a spaceship and look at it?’” said Joe DePasquale, a senior data image developer at the Space Telescope Science Institute, in a phone call with Gizmodo. “You don’t ask a biologist if you can somehow shrink down to the size of a cell and look at the fake coronavirus.”

Webb’s first test images helped check its mirrors’ alignment and captured an orange-tinted shot of the Large Magellanic Cloud. Those early snapshots were not representative color images; one used a monochromatic filter (its image was grayscale) and the other just translated infrared light into the red-to-yellow visible color bands, so the team could see certain features of the cloud they imaged. But now, with the telescope up and running, the images that get released are full of blazing color, like this recent portrait of the Cartwheel Galaxy.

Astronomy is often done outside the visible spectrum, because many of the most interesting objects in space are shining brightly in ultraviolet, x-rays, and even radio waves (which category light falls into depends on the photon’s wavelength). The Webb Telescope is designed to see infrared light, whose wavelengths are longer than red visible light but shorter than microwaves.

Infrared light can penetrate thick clouds of gas and dust in space, allowing researchers to see previously hidden secrets of the universe. Especially intriguing to scientists is that light from the early universe has been stretched as the universe has expanded, meaning what was once ultraviolet or visible light may now be infrared (what’s known as “redshifted” light).

“These are instruments that we’ve designed to extend the power of our vision, to go beyond what our eyes are capable of doing to see light that our eyes are not sensitive to, and to resolve objects that we can probably see with just our eyes,” DePasquale said. “I’m trying to bring out the most detail and the most richness of color and complexity that’s inherent in the data without actually changing anything.”

Webb’s raw images are so laden with data that they need to be scaled down before they can be translated into visible light. The images also need to be cleaned of artifacts like cosmic rays and reflections from bright stars that hit the telescope’s detectors. If you look at a Webb image before processing work is done, it’ll look like a black rectangle peppered with some white dots.